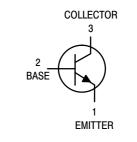
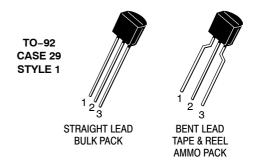
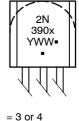
General Purpose Transistors

NPN Silicon


Features


• Pb-Free Packages are Available*


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

x = 3 or 4 Y = Year WW = Work Week = = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	40	Vdc
Collector-Base Voltage	V _{CBO}	60	Vdc
Emitter – Base Voltage	V _{EBO}	6.0	Vdc
Collector Current – Continuous	Ι _C	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS (Note 1)

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	83.3	°C/W

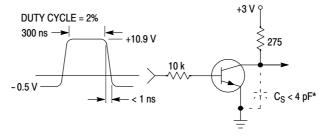
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Indicates Data in addition to JEDEC Requirements.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

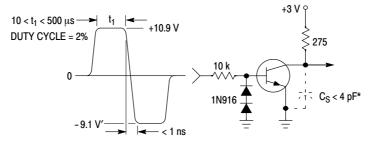
ELECTRICAL CHARACTERISTICS (T_A = 25° C unless otherwise noted)

C C	Symbol	Min	Max	Unit		
OFF CHARACTERISTICS						
Collector – Emitter Breakdown Voltag	ge (Note 2) (I_C = 1.0 mAdc, I_B = 0)		V _{(BR)CEO}	40	-	Vdc
Collector - Base Breakdown Voltage	(I _C = 10 μAdc, I _E = 0)		V _{(BR)CBO}	60	-	Vdc
Emitter – Base Breakdown Voltage (I	_E = 10 μAdc, I _C = 0)		V _{(BR)EBO}	6.0	-	Vdc
Base Cutoff Current (V _{CE} = 30 Vdc,	V _{EB} = 3.0 Vdc)		I _{BL}	-	50	nAdc
Collector Cutoff Current (V _{CE} = 30 V	dc, V _{EB} = 3.0 Vdc)		I _{CEX}	-	50	nAdd
ON CHARACTERISTICS						
DC Current Gain (Note 2) $(I_C = 0.1 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$		2N3903	h _{FE}	20	-	-
(I _C = 1.0 mAdc, V _{CE} = 1.0 Vdc)		2N3904 2N3903 2N3904		40 35 70		
(I _C = 10 mAdc, V_{CE} = 1.0 Vdc)		2N3903 2N3904		50 100	150 300	
(I _C = 50 mAdc, V _{CE} = 1.0 Vdc)		2N3904 2N3903 2N3904		30 60		
$(I_{C} = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$		2N3903 2N3904		15 30		
$\begin{array}{l} \mbox{Collector}-\mbox{Emitter Saturation Voltage} \\ (I_C = 10 \mbox{ mAdc}, \ I_B = 1.0 \mbox{ mAdc}) \\ (I_C = 50 \mbox{ mAdc}, \ I_B = 5.0 \mbox{ mAdc} \end{array}$	e (Note 2)		V _{CE(sat)}		0.2 0.3	Vdc
$\begin{array}{l} \text{Base}-\text{Emitter Saturation Voltage (N}\\ (I_{C}=10\text{ mAdc},\ I_{B}=1.0\text{ mAdc})\\ (I_{C}=50\text{ mAdc},\ I_{B}=5.0\text{ mAdc}) \end{array}$	V _{BE(sat)}	0.65 -	0.85 0.95	Vdc		
SMALL-SIGNAL CHARACTERIST	ICS				1	
Current-Gain – Bandwidth Product ($I_C = 10 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 10$	0 MHz)	2N3903 2N3904	f _T	250 300		MHz
Output Capacitance (V _{CB} = 5.0 Vdc,	I _E = 0, f = 1.0 MHz)		C _{obo}	-	4.0	pF
Input Capacitance (V _{EB} = 0.5 Vdc, I _c	₂ = 0, f = 1.0 MHz)		C _{ibo}	-	8.0	pF
Input Impedance (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.	2N3903 2N3904	h _{ie}	1.0 1.0	8.0 10	kΩ	
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.	2N3903 2N3904	h _{re}	0.1 0.5	5.0 8.0	X 10⁻	
Small–Signal Current Gain ($I_C = 1.0$ mAdc, $V_{CE} = 10$ Vdc, f = 1.	2N3903 2N3904	h _{fe}	50 100	200 400	-	
Output Admittance (I _C = 1.0 mAdc, \		h _{oe}	1.0	40	μmho	
Noise Figure (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc, R _S =	2N3903 2N3904	NF		6.0 5.0	dB	
SWITCHING CHARACTERISTICS						
Delay Time (Vcc = 3.0 Vc	dc, V _{BE} = 0.5 Vdc,		t _d	-	35	ns
Bise Time I _C = 10 mAdo		+	1	35	ns	


Delay Time	(V _{CC} = 3.0 Vdc, V _{BE} = 0.5 Vdc,	t _d	-	35	ns
Rise Time	$I_{\rm C} = 10 \text{ mAdc}, I_{\rm B1} = 1.0 \text{ mAdc})$	t _r	-	35	ns
Storage Time		t _s	-	175 200	ns
Fall Time		t _f	-	50	ns

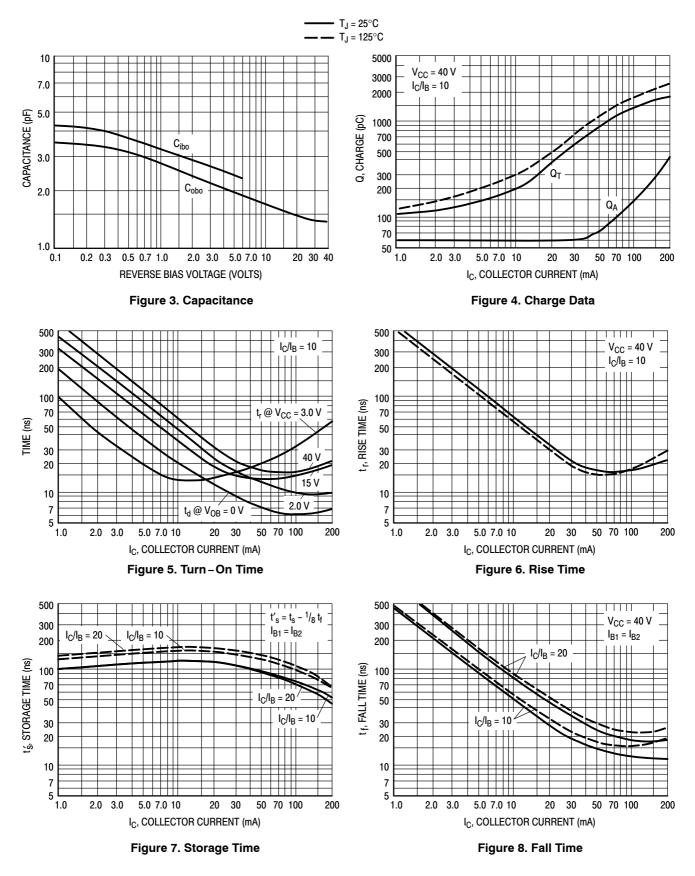
2. Pulse Test: Pulse Width \leq 300 µs; Duty Cycle \leq 2%.

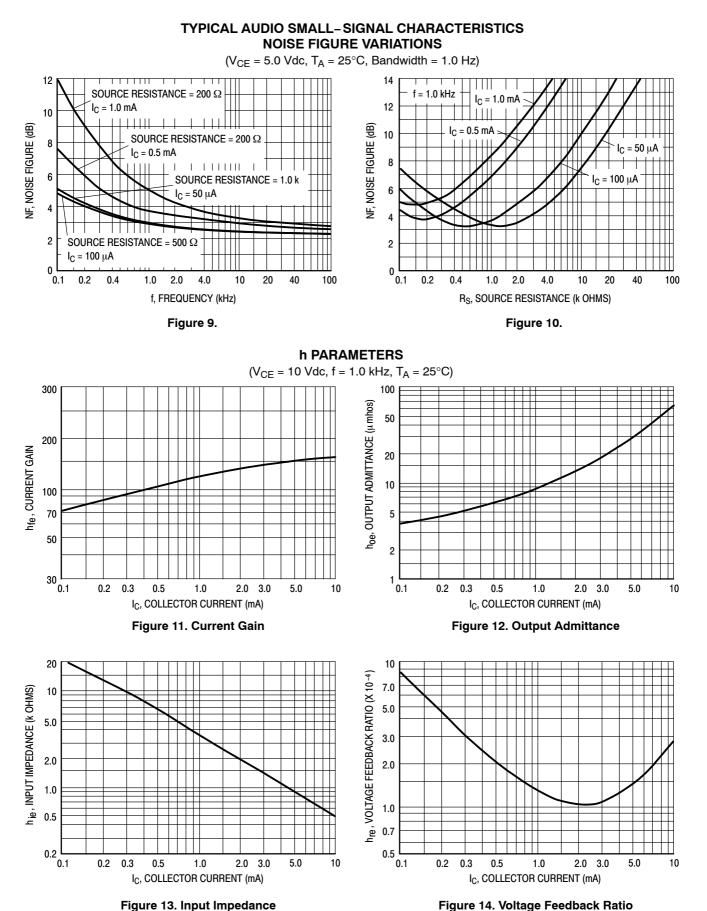
ORDERING INFORMATION


Device	Package	Shipping [†]
2N3903RLRM	TO-92	2000 / Ammo Pack
2N3904	TO-92	5000 Units / Bulk
2N3904G	TO-92 (Pb-Free)	5000 Units / Bulk
2N3904RLRA	TO-92	2000 / Tape & Reel
2N3904RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
2N3904RLRM	TO-92	2000 / Ammo Pack
2N3904RLRMG	TO-92 (Pb-Free)	2000 / Ammo Pack
2N3904RLRP	TO-92	2000 / Ammo Pack
2N3904RLRPG	TO-92 (Pb-Free)	2000 / Ammo Pack
2N3904RL1G	TO-92 (Pb-Free)	2000 / Tape & Reel
2N3904ZL1	TO-92	2000 / Ammo Pack
2N3904ZL1G	TO-92 (Pb-Free)	2000 / Ammo Pack

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

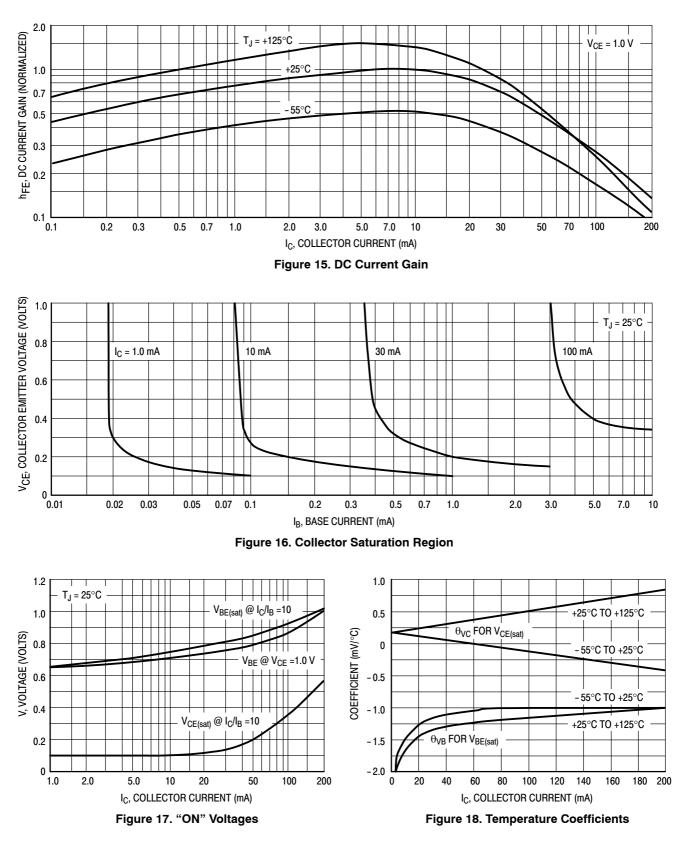
* Total shunt capacitance of test jig and connectors

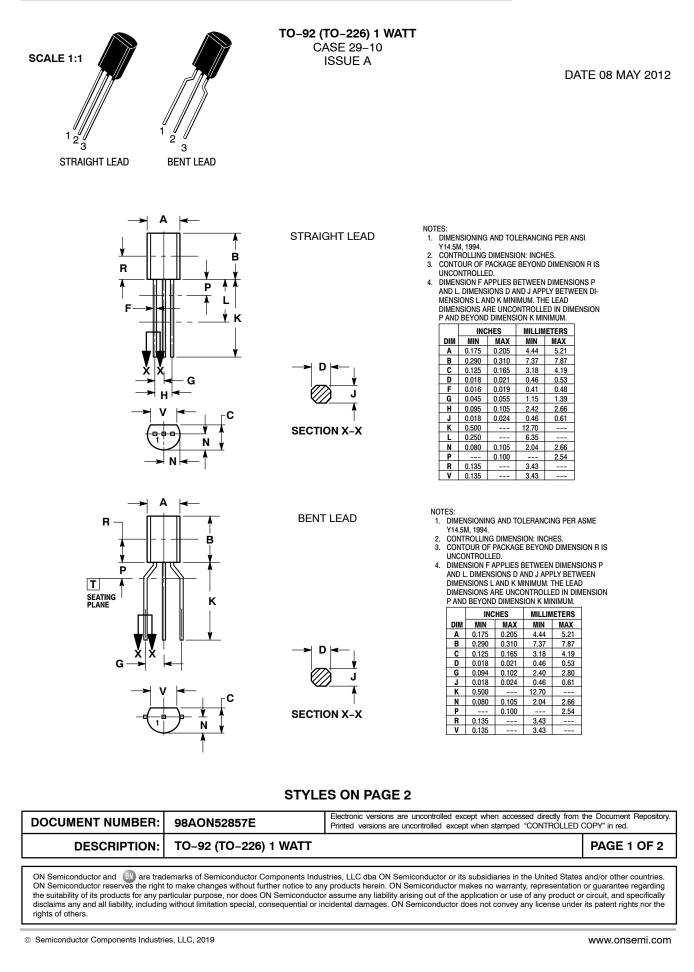

Figure 1. Delay and Rise Time Equivalent Test Circuit



* Total shunt capacitance of test jig and connectors

Figure 2. Storage and Fall Time Equivalent Test Circuit


TYPICAL TRANSIENT CHARACTERISTICS


http://onsemi.com 5

TYPICAL STATIC CHARACTERISTICS

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE A

DATE 08 MAY 2012

	EMITTER BASE COLLECTOR								
	GATE SOURCE & SUBSTRATE DRAIN								
STYLE 11: PIN 1. 2. 3.	ANODE CATHODE & ANODE CATHODE	STYLE 12: PIN 1. 2. 3.	MAIN TERMINAL 1 Gate Main Terminal 2	STYLE 13: PIN 1. 2. 3.	ANODE 1 GATE CATHODE 2	STYLE 14: PIN 1. 2. 3.	EMITTER COLLECTOR BASE	STYLE 15: PIN 1. 2. 3.	ANODE 1 CATHODE ANODE 2
STYLE 16: PIN 1. 2. 3.	ANODE GATE CATHODE	STYLE 17: PIN 1. 2. 3.	COLLECTOR BASE EMITTER	STYLE 18: PIN 1. 2. 3.	ANODE CATHODE NOT CONNECTED	STYLE 19: PIN 1. 2. 3.	GATE ANODE CATHODE	STYLE 20: PIN 1. 2. 3.	NOT CONNECTED CATHODE ANODE
STYLE 21: PIN 1. 2. 3.	COLLECTOR EMITTER BASE	STYLE 22: PIN 1. 2. 3.	SOURCE GATE DRAIN	STYLE 23: PIN 1. 2. 3.	GATE SOURCE DRAIN	STYLE 24: PIN 1. 2. 3.	EMITTER Collector/Anode Cathode	STYLE 25: PIN 1. 2. 3.	MT 1 GATE MT 2
STYLE 26: PIN 1. 2. 3.	V _{CC} GROUND 2 OUTPUT	STYLE 27: PIN 1. 2. 3.	MT SUBSTRATE MT	STYLE 28: PIN 1. 2. 3.	CATHODE ANODE GATE	STYLE 29: PIN 1. 2. 3.	NOT CONNECTED ANODE CATHODE	STYLE 30: PIN 1. 2. 3.	DRAIN GATE SOURCE
STYLE 31: PIN 1. 2. 3.	GATE DRAIN SOURCE	STYLE 32: PIN 1. 2. 3.	BASE COLLECTOR EMITTER	STYLE 33: PIN 1. 2. 3.	RETURN INPUT OUTPUT	STYLE 34: PIN 1. 2. 3.	INPUT Ground Logic	STYLE 35: PIN 1. 2. 3.	GATE COLLECTOR EMITTER

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 2 OF 2		
ON Somiconductor and Mars trademarka of Somiconductor Components Inductrics 11 C die ON Somiconductor or its subsidiaries in the United States and/or other countries					

ON Semiconductor and us are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

<u>2N3904CTA</u> <u>2N3904NLBU</u> <u>2N3903RLRM</u> <u>2N3904</u> <u>2N3904G</u> <u>2N3904RL1</u> <u>2N3904RL1G</u> <u>2N3904RLRA</u> <u>2N3904RLRAG</u> <u>2N3904RLRM</u> <u>2N3904RLRMG</u> <u>2N3904RLRPG</u> <u>2N3904RLRPG</u> <u>2N3904ZL1</u> <u>2N3904ZL1G</u> <u>2N3903</u>